

Large Deviation Theory for the Analysis of Power Tansmission Systems Subject to Stochastic Forcing

June 25. 2019

Jake Roth¹, David Barajas-Solano² Panos Stinis², Mihai Anitescu¹ Jonathan Weare³, Charles Matthews⁴

 $^{1} {\rm Argonne~National~Laboratory}$ $^{2} {\rm Pacific~Northwest~National~Laboratory}$ $^{3} {\rm NYU~Courant}$

 $^4\mathrm{U}$. Edinburgh

Quantifying the risk of cascading power transmission outages is critical

- Critical for safe planning and operation of the grid
- The growing complexity of the grid render the challenge and importance of this problem more pronounced

Event sequence of the WSCC July 2 & 3 1996 system disturbance [2]

Challenges

- Component outages don't propagate locally along the grid topology
- Necessary to resolve the complex interactions between components
 - Grid dynamics
 - ► AC power flow
- Rare events: Lack of data to guide data-driven statistical models

Our goal: A generative probabilistic model for cascading failure

Approach: Construct...

- Analytic, tractable models for probabilities of individual component failures
 - Accounting for grid dynamics and AC power flow
 - ...and Load and generation fluctuations
- 2. Aggregate failure model based on individual probabilities

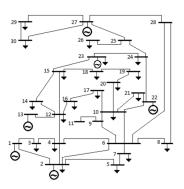
Opportunities

- Stochastic dynamical systems
- Large deviation theory

Outline

- 1. Power transmission network model
- 2. Individual line failure model
- 3. Aggregate line failure model

Undirected graph $(\mathcal{B}, \mathcal{E})$, with \mathcal{E} the set of transmission lines and $\mathcal{B} \equiv \mathcal{G}$ (generator) $\cup \mathcal{L}$ (load) $\cup \mathcal{S}$ (slack/ref.) the set of nodes/buses



Assumptions

- Swing equations to model generation synchronization
- Lossless AC power flow equations
- Frequency-dependent active load

y: Operating conditions

IEEE 30-bus system [3]

ı

DAE dynamics

$$\dot{\theta}_i = \omega_i - \omega_{\mathcal{S}}, \qquad i \in \mathcal{G}
\dot{\omega}_i = P_i^y - F_i^y(\theta, V) - D_i(\omega_i - \omega_{\mathcal{S}}), \qquad i \in \mathcal{G} \cup \mathcal{S}$$

Swing equations

DAE dynamics

$$\dot{\theta}_{i} = \omega_{i} - \omega_{\mathcal{S}}, \qquad i \in \mathcal{G}
\dot{\omega}_{i} = P_{i}^{y} - F_{i}^{y}(\theta, V) - D_{i}(\omega_{i} - \omega_{\mathcal{S}}), \qquad i \in \mathcal{G} \cup \mathcal{S}
0 = P_{i}^{y} - F_{i}^{y}(\theta, V), \qquad i \in \mathcal{L}
0 = Q_{i}^{y} - G_{i}^{y}(\theta, V), \qquad i \in \mathcal{L}$$

- Swing equations
- ► Lossless AC power flow

DAE dynamics

$$\begin{split} \dot{\theta}_i &= \omega_i - \omega_{\mathcal{S}}, & i \in \mathcal{G} \\ \dot{\omega}_i &= P_i^y - F_i^y(\theta, V) - D_i(\omega_i - \omega_{\mathcal{S}}), & i \in \mathcal{G} \cup \mathcal{S} \\ 0 &= P_i^y - F_i^y(\theta, V), & i \in \mathcal{L} \\ 0 &= Q_i^y - G_i^y(\theta, V), & i \in \mathcal{L} \\ - D_{\mathcal{L}}\dot{\theta}_i &= P_i^y - F_i^y(\theta, V), & i \in \mathcal{L} \end{split}$$

- Swing equations
- Lossless AC power flow
- Load model

DAE dynamics

$$\begin{split} \dot{\theta}_i &= \omega_i - \omega_{\mathcal{S}}, & i \in \mathcal{G} \\ \dot{\omega}_i &= P_i^y - F_i^y(\theta, V) - D_i(\omega_i - \omega_{\mathcal{S}}), & i \in \mathcal{G} \cup \mathcal{S} \\ 0 &= P_i^y - F_i^y(\theta, V), & i \in \mathcal{L} \\ 0 &= Q_i^y - G_i^y(\theta, V), & i \in \mathcal{L} \\ - D_{\mathcal{L}}\dot{\theta}_i &= P_i^y - F_i^y(\theta, V), & i \in \mathcal{L} \end{split}$$

Singularly-perturbed ODE system

$$\dot{x} = \begin{bmatrix} \dot{\omega}_{\mathcal{G} \cup \mathcal{S}} \\ \dot{\theta}_{\mathcal{G} \cup \mathcal{L}} \\ \dot{V}_{\mathcal{L}} \end{bmatrix} = \begin{bmatrix} -M_{\mathcal{G}}^{-1} D_{\mathcal{G}} M_{\mathcal{G}}^{-1} & -M_{\mathcal{G}}^{-1} T_{1}^{\top} & 0 \\ T_{1} M_{\mathcal{G}}^{-1} & -T_{2} D_{\mathcal{L}}^{-1} T_{2}^{\top} & 0 \\ 0 & 0 & D_{V}^{-1} \mathcal{I}_{\mathcal{L}} \end{bmatrix} \nabla \mathcal{H}^{y}(x)$$

 $x \in \mathbb{R}^d$, with "energy" function

$$\mathcal{H}^{y}(x) = \frac{1}{2} \omega_{\mathcal{G} \cup \mathcal{S}}^{\top} M_{\mathcal{G}} \, \omega_{\mathcal{G} \cup \mathcal{S}} + \frac{1}{2} v_{\mathcal{L}}^{\mathsf{H}} B^{y} \, v_{\mathcal{L}} + \left(P_{\mathcal{G} \cup \mathcal{L}}^{y} \right)^{\top} \theta_{\mathcal{G} \cup \mathcal{L}} + \left(Q_{\mathcal{L}}^{y} \right)^{\top} \log V_{\mathcal{L}}$$

Port-Hamiltonian form

The singularly-perturbed model is of Port-Hamiltonian form

$$\dot{x} = (J - S)\nabla \mathcal{H}^y(x)$$

where J is skew-symmetric, and $S \succeq 0$

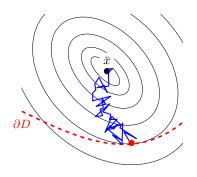
Stochastic model [4]

To account for noise in generation and load we introduce white noise:

$$dx_t^{\tau} = (J - S)\nabla \mathcal{H}^y(x_t^{\tau}) dt + \sqrt{2\tau} S^{1/2} dW_t$$

where τ is the noise strength/"temperature", and $W_t \in \mathbb{R}^d$ is a vector of d independent Weiner processes

Modeling line failures



- Line energy constraint $\Theta_l(x_t) < \Theta_l^{\max}$
- Line fails if dynamics exit the basin of attraction around \bar{x} across ∂D

$$D \equiv \{x \colon \Theta_l(x) < \Theta_l^{\max}\}$$

 Goal: Estimate distribution of first exit times

$$T_{\partial D}^{\tau} \equiv \inf\{t > 0, x_t^{\tau} \in \partial D\}$$

In general, $\langle b(x), n(x) \rangle < 0$ (non-characteristic, n(x): outward unit vector normal to ∂D), so we can employ the large deviation theory for escapes across non-characteristic surfaces

Freidlin-Wentzell large deviation theory

For the subdomain $D \subset \mathbb{R}^d$ with non-characteristic surface ∂D ,

$$\lim_{\tau \to 0} \tau \log \mathbb{E} T_{\partial D}^{\tau} = \min_{x \in \partial D} V(\bar{x}, x)$$

with quasipotential

$$V(\bar{x}, x) \equiv \inf \left\{ S_{[0, T]}^{\bar{x}}(\phi_t) \colon \phi_t(0) = \bar{x}, \ \phi_t(T) = x, \ T > 0 \right\}$$
$$S_{[0, T]}^{\bar{x}}(\phi_t) = \frac{1}{4} \int_0^T \left\langle \left[\dot{\phi}_t - b(\phi_t) \right], \left[\sigma(\phi_t) \sigma(\phi_t)^\top \right]^+ \left[\dot{\phi}_t - b(\phi_t) \right] \right\rangle \, \mathrm{d}t$$

Transverse decomposition

There are smooth functions $U\colon D\cup\partial D\to\mathbb{R}^d$, $l\colon D\cup\partial D\to\mathbb{R}^d$ such that

$$b(x) = -\sigma(x)\sigma(x)^{\top}\nabla U(x) + l(x)$$

Assuming this decomposition, we have $V(\bar{x},x) = U(x) - U(\bar{x})$

Freidlin-Wentzell large deviation theory

During the quasi-stationary phase

$$1 \ll t \ll \exp\left[\min_{x \in \partial D} \frac{U(x) - U(\bar{x})}{\tau}\right], \text{ we have}$$

$$\frac{d}{dt} \mathbb{P}\left[T_{\partial D}^{\tau} > t\right] \approx -\int_{\partial D} \left\langle j^{\tau}(x), n(x) \right\rangle \, \mathrm{d}S(x) \equiv -\lambda^{\tau}$$

- $\triangleright \lambda^{\tau}$: (quasi-stationary) Exit rate
- $\triangleright j^{\tau}$: (quasi-stationary) Probability current

For
$$\operatorname{div} l(x) = 0$$
,

$$\boldsymbol{j}^{\tau}(\boldsymbol{x}) = \sqrt{\frac{\det \operatorname{Hess} U(\bar{\boldsymbol{x}})}{(2\pi\tau)^d}} \exp\left(-\frac{U(\boldsymbol{x}) - U(\bar{\boldsymbol{x}})}{\tau}\right) \left\langle \boldsymbol{\sigma}(\boldsymbol{x}) \boldsymbol{\sigma}(\boldsymbol{x})^{\top} U(\boldsymbol{x}) + l(\boldsymbol{x}), \boldsymbol{n}(\boldsymbol{x}) \right\rangle$$

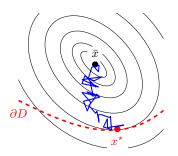
(Bouchet-Reygner [1])

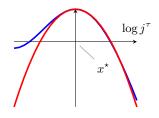
Asymptotic exit rate

Our model has a transverse decomposition with $U(x)=\mathcal{H}^y(x)$, $l(x)=J\nabla\mathcal{H}^y(x)$, and $\sigma=S^{1/2}$

ightharpoonup For au
ightharpoonup 0, the probability current is peaked around

$$\boldsymbol{x}^{\star} \equiv \mathop{\arg\min}_{\boldsymbol{x} \in \partial D} V(\bar{\boldsymbol{x}}, \boldsymbol{x}) = \mathop{\arg\min}_{\boldsymbol{\Theta}_{l}(\boldsymbol{x}) = \boldsymbol{\Theta}_{l}^{\max}} \mathcal{H}^{\boldsymbol{y}}(\boldsymbol{x})$$





Asymptotic exit rate

Laplace surface integral leads to

$$\lambda^{\tau} \underset{\tau \to 0}{\sim} \nabla^{\top} \mathcal{H}(x_{\star}) S \nabla \mathcal{H}(x_{\star}) \sqrt{\frac{|\det \operatorname{Hess} \mathcal{H}(\bar{x})|}{2\pi \tau B^{\star}}} \exp\left(-\frac{\mathcal{H}(x_{\star}) - \mathcal{H}(\bar{x})}{\tau}\right)$$

with $\mathcal{H}\equiv\mathcal{H}^y$, where B^\star is a factor accounting for the curvature of ∂D around the exit point x^\star :

$$B^* \equiv \nabla_x \mathcal{H}(x^*)^\top L^{-1} \nabla_x \mathcal{H}(x^*) \det L, \quad L = \operatorname{Hess} \mathcal{H}(x_*) - k \operatorname{Hess} \Theta_l(x_*)$$

and k is the Lagrange multiplier of the Θ_l constraint

Individual line failure model

Energy minimizers

$$\bar{x} \equiv \mathop{\arg\min}_{\Theta_l(x) < \Theta_l^{\max}} \mathcal{H}^y(x), \quad x^\star \equiv \mathop{\arg\min}_{\Theta_l(x) = \Theta_l^{\max}} \mathcal{H}^y(x)$$

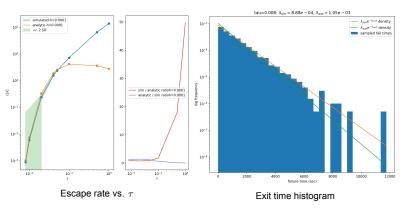
Failure rate

$$\lambda^{\tau} \underset{\tau \to 0}{\sim} \nabla^{\top} \mathcal{H}(x_{\star}) S \nabla \mathcal{H}(x_{\star}) \sqrt{\frac{|\det \operatorname{Hess} \mathcal{H}(\bar{x})|}{2\pi \tau B^{\star}}} \exp\left(-\frac{\mathcal{H}(x_{\star}) - \mathcal{H}(\bar{x})}{\tau}\right)$$

Assumptions

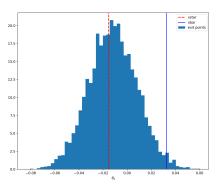
- ▶ Non-characteristic transition surface $\partial D = \{x : \Theta_l(x) = \Theta_l^{\max}\}$
- $ightharpoonup \langle n(x), Sn(x) \rangle > 0$, so not applicable to generator-generator and slack-generator lines

Failure rate validation 3-bus system



Line 2 (Generator-load)

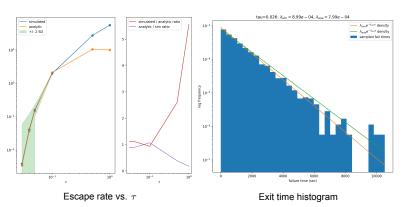
Failure rate validation 3-bus system



Exit point histogram

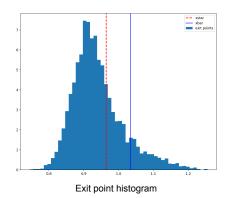
Line 2 (Generator-load)

Failure rate validation 30-bus system



Line 5 (Slack-load)

Failure rate validation 30-bus system



Line 5 (Slack-load)

Aggregate line failure model

- Event-based discretization of dynamics
- Simulate cascade by jumping between line failures with probability given by the individual line failure rates
- \blacktriangleright Line failure sequence S and its permutations $\sigma(S)$ produce the same \bar{x} and λ_l^τ

Algorithm Kinetic Monte Carlo

Require: Initialize sequence $S \leftarrow \{\emptyset\}$

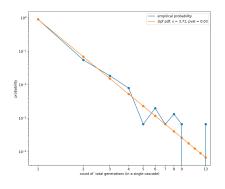
- 1: repeat
- 2: Compute \bar{x} for S
- 3: Compute x_l^{\star} and λ_l^{τ} for each line l given S
- 4: Compute aggregate rate $\lambda_{S \to \hat{S}} = \sum_{l} \lambda_{S \to S \cup l}$
- 5: Sample failure time as $\Delta t \sim \operatorname{Exp}(\lambda_{S \to S \cup l})$
- 6: Sample failed line \hat{l} according to its contribution to the aggregate rate
- 7: $t \leftarrow t + \Delta t$
- 8: $S \leftarrow \hat{S} \equiv S \cup \hat{l}$
- 9: until End cascade

Aggregate line failure model

- Split simulated cascade into "generations" (sequences of failures in 1 min timeframe)
- Observed power-law (Zipf) distribution of count of generations in a cascade

Aggregate line failure model

- Split simulated cascade into "generations" (sequences of failures in 1 min timeframe)
- Observed power-law (Zipf) distribution of count of generations in a cascade
- KMC model resolves power-law distribution



Empirical distribution of counted total generations for cascade of 118-bus system

Conclusions

A generative probabilistic model for quantifying risk of cascading failure

- Formulated a stochastic Port-Hamiltonian model of transmission network dynamics subject to stochastic forcing
- Individual line failure model: Large deviation theory employed to evaluate failure rates of each line
- Aggregate line failure model: KMC algorithm based on individual line failure rates

References

- [1] F. Bouchet and J. Reygner. Generalisation of the eyring–kramers transition rate formula to irreversible diffusion processes. *Annales Henri Poincaré*, 17(12): 3499–3532, Dec 2016. ISSN 1424-0661. doi: 10.1007/s00023-016-0507-4. URL https://doi.org/10.1007/s00023-016-0507-4.
- [2] P. D. H. Hines, I. Dobson, and P. Rezaei. Cascading power outages propagate locally in an influence graph that is not the actual grid topology. *IEEE Transactions* on *Power Systems*, 32(2):958–967, March 2017. ISSN 0885-8950. doi: 10.1109/TPWRS.2016.2578259.
- [3] P. K. Hota and A. P. Naik. Analytical review of power flow tracing in deregulated power system. American Journal of Electrical and Electronic Engineering, 4(3): 92–101, 2016. ISSN 2328-7357. URL http://pubs.sciepub.com/ajeee/4/3/4.
- [4] C. Matthews, B. Stadie, J. Weare, M. Anitescu, and C. Demarco. Simulating the stochastic dynamics and cascade failure of power networks. arXiv e-prints, art. arXiv:1806.02420, Jun 2018.