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Quantifying the risk of cascading power

transmission outages is critical

I Critical for safe planning and operation of the grid

I The growing complexity of the grid render the challenge and importance

of this problem more pronounced

Event sequence of the WSCC July
2 & 3 1996 system disturbance [2]

Challenges

I Component outages don’t propagate

locally along the grid topology

I Necessary to resolve the complex
interactions between components

I Grid dynamics
I AC power flow

I Rare events: Lack of data to guide

data-driven statistical models
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Our goal: A generative probabilistic

model for cascading failure

Approach: Construct...

1. Analytic, tractable models for probabilities of individual component
failures

I Accounting for grid dynamics and AC power flow
I ...and Load and generation fluctuations

2. Aggregate failure model based on individual probabilities

Opportunities

I Stochastic dynamical systems

I Large deviation theory
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Outline

1. Power transmission network model

2. Individual line failure model

3. Aggregate line failure model
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Power transmission network model

Undirected graph (B, E), with E the set of transmission lines and

B ≡ G (generator) ∪ L (load) ∪ S (slack/ref.) the set of nodes/buses

IEEE 30-bus system [3]

Assumptions

I Swing equations to model generation

synchronization

I Lossless AC power flow equations

I Frequency-dependent active load

y: Operating conditions
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Power transmission network model

DAE dynamics

θ̇i = ωi − ωS , i ∈ G
ω̇i = P y

i − F y
i (θ, V )−Di(ωi − ωS), i ∈ G ∪ S

0 = P y
i − F y

i (θ, V ), i ∈ L
0 = Qy

i −Gy
i (θ, V ), i ∈ L

−DLθ̇i = P y
i − F y

i (θ, V ), i ∈ L

I Swing equations

I Lossless AC power flow

I Load model
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Power transmission network model

DAE dynamics
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Singularly-perturbed ODE system

ẋ =

ω̇G∪S

θ̇G∪L

V̇L

 =

−M−1
G DGM

−1
G −M−1

G T>
1 0

T1M
−1
G −T2D

−1
L T>

2 0
0 0 D−1

V IL

∇Hy(x)

x ∈ Rd, with “energy” function

Hy(x) =
1

2
ω>
G∪SMG ωG∪S +

1

2
vHLB

y vL +
(
P y
G∪L

)>
θG∪L + (Qy

L)
> logVL
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Port-Hamiltonian form

The singularly-perturbed model is of Port-Hamiltonian form

ẋ = (J − S)∇Hy(x)

where J is skew-symmetric, and S � 0

Stochastic model [4]

To account for noise in generation and load we introduce white noise:

dxτ
t = (J − S)∇Hy (xτ

t ) dt+
√
2τS1/2dWt

where τ is the noise strength/“temperature”, and Wt ∈ Rd is a vector

of d independent Weiner processes
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Modeling line failures

x̄

∂D

I Line energy constraint Θl(xt) < Θmax
l

I Line fails if dynamics exit the basin of

attraction around x̄ across ∂D

D ≡ {x : Θl(x) < Θmax
l }

I Goal: Estimate distribution of first exit

times

T τ
∂D ≡ inf {t > 0, xτ

t ∈ ∂D}

I In general, 〈b(x), n(x)〉 < 0
(non-characteristic, n(x): outward unit

vector normal to ∂D), so we can employ

the large deviation theory for escapes

across non-characteristic surfaces
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Freidlin-Wentzell large deviation theory

For the subdomain D ⊂ Rd with non-characteristic surface ∂D,

lim
τ→0

τ logET τ
∂D = min

x∈∂D
V (x̄, x)

with quasipotential

V (x̄, x) ≡ inf
{
Sx̄
[0,T ](φt) : φt(0) = x̄, φt(T ) = x, T > 0

}
Sx̄
[0,T ](φt) =

1

4

∫ T

0

〈[
φ̇t − b(φt)

]
,
[
σ(φt)σ(φt)

>
]+ [

φ̇t − b(φt)
]〉

dt

Transverse decomposition

There are smooth functions U : D ∪ ∂D → Rd, l : D ∪ ∂D → Rd such

that

I b(x) = −σ(x)σ(x)>∇U(x) + l(x)

I 〈∇U(x), l(x)〉 = 0

Assuming this decomposition, we have V (x̄, x) = U(x)− U(x̄)
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Freidlin-Wentzell large deviation theory

During the quasi-stationary phase

1� t� exp
[

min
x∈∂D

U(x)− U(x̄)

τ

]
, we have

d

dt
P [T τ

∂D > t] ≈ −
∫
∂D

〈jτ (x), n(x)〉 dS(x) ≡ −λτ

I λτ : (quasi-stationary) Exit rate

I jτ : (quasi-stationary) Probability current

For div l(x) = 0,

jτ (x) =

√
det HessU(x̄)

(2πτ)d
exp

(
−U(x)− U(x̄)

τ

)〈
σ(x)σ(x)>U(x) + l(x), n(x)

〉
(Bouchet-Reygner [1])
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Asymptotic exit rate

Our model has a transverse decomposition with U(x) = Hy(x),
l(x) = J∇Hy(x), and σ = S1/2

I For τ → 0, the probability current is peaked around

x? ≡ arg min
x∈∂D

V (x̄, x) = arg min
Θl(x)=Θmax

l

Hy(x)

x̄

x?

∂D

x?: Exit point for τ → 0

x?

log jτ
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Asymptotic exit rate

Laplace surface integral leads to

λτ ∼
τ→0
∇>H(x?)S∇H(x?)

√
|det HessH(x̄)|

2πτB?
exp

(
−H(x?)−H(x̄)

τ

)
with H ≡ Hy, where B? is a factor accounting for the curvature of ∂D around

the exit point x?:

B? ≡ ∇xH(x?)>L−1∇xH(x?)detL, L = HessH(x?)− k HessΘl(x?)

and k is the Lagrange multiplier of the Θl constraint
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Individual line failure model

Energy minimizers

x̄ ≡ arg min
Θl(x)<Θmax

l

Hy(x), x? ≡ arg min
Θl(x)=Θmax

l

Hy(x)

Failure rate

λτ ∼
τ→0
∇>H(x?)S∇H(x?)

√
| det HessH(x̄)|

2πτB?
exp

(
−H(x?)−H(x̄)

τ

)

Assumptions

I Non-characteristic transition surface ∂D = {x : Θl(x) = Θmax
l }

I 〈n(x), Sn(x)〉 > 0, so not applicable to generator-generator and

slack-generator lines
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Failure rate validation
3-bus system

Escape rate vs. τ Exit time histogram

Line 2 (Generator-load)
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Failure rate validation
3-bus system

Exit point histogram

Line 2 (Generator-load)
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Failure rate validation
30-bus system

Escape rate vs. τ Exit time histogram

Line 5 (Slack-load)
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Failure rate validation
30-bus system

Exit point histogram

Line 5 (Slack-load)
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Aggregate line failure model

I Event-based discretization of dynamics
I Simulate cascade by jumping between line failures with probability given

by the individual line failure rates
I Line failure sequence S and its permutations σ(S) produce the same x̄

and λτ
l

Algorithm Kinetic Monte Carlo

Require: Initialize sequence S ← {∅}
1: repeat

2: Compute x̄ for S
3: Compute x?

l and λτ
l for each line l given S

4: Compute aggregate rate λS→Ŝ =
∑

l λS→S∪l

5: Sample failure time as ∆t ∼ Exp (λS→S∪l)
6: Sample failed line l̂ according to its contribution to the aggregate rate

7: t← t+∆t
8: S ← Ŝ ≡ S ∪ l̂
9: until End cascade
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Aggregate line failure model

I Split simulated cascade into

“generations” (sequences of

failures in 1 min timeframe)

I Observed power-law (Zipf)

distribution of count of

generations in a cascade

I KMC model resolves power-law

distribution

Empirical distribution of counted total
generations for cascade of 118-bus system
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Conclusions

A generative probabilistic model for quantifying risk of cascading

failure

I Formulated a stochastic Port-Hamiltonian model of transmission

network dynamics subject to stochastic forcing

I Individual line failure model: Large deviation theory employed to

evaluate failure rates of each line

I Aggregate line failure model: KMC algorithm based on individual line

failure rates
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